Author Affiliations
Abstract
1 East China Normal University, School of Physics and Electronic Science, State Key Laboratory of Precision Spectroscopy, Shanghai, China
2 Chinese Academy of Sciences, Shanghai Institute of Optics and Fine Mechanics, Key Laboratory of Materials for High-Power Laser, Shanghai, China
3 Shanghai University, Department of Physics, Shanghai, China
4 Wuhan University, School of Physics and Technology, Center for Nanoscience and Nanotechnology, Wuhan, China
5 University of Chinese Academy of Sciences, Hangzhou Institute for Advanced Study, Hangzhou, China
6 Chongqing Institute of East China Normal University, Chongqing Key Laboratory of Precision Optics, Chongqing, China
The collective response of macroscopic quantum states under perturbation is widely used to study quantum correlations and cooperative properties, such as defect-induced quantum vortices in Bose–Einstein condensates and the non-destructive scattering of impurities in superfluids. Superfluorescence (SF), as a collective effect rooted in dipole–dipole cooperation through virtual photon exchange, leads to the macroscopic dipole moment (MDM) in high-density dipole ensembles. However, the perturbation response of the MDM in SF systems remains unknown. Echo-like behavior is observed in a cooperative exciton ensemble under a controllable perturbation, corresponding to an initial collapse followed by a revival of the MDM. Such a dynamic response could refer to a phase transition between the macroscopic coherence regime and the incoherent classical state on a time scale of 10 ps. The echo-like behavior is absent above 100 K due to the instability of MDM in a strongly dephased exciton ensemble. Experimentally, the MDM response to perturbations is shown to be controlled by the amplitude and injection time of the perturbations.
superfluorescence polariton photoluminescence exciton 
Advanced Photonics
2023, 5(5): 055001
Xin Chen 1,2,3Saifeng Zhang 1,2,3,8Lei Wang 1,2,3Yi-Fan Huang 4,5[ ... ]Jun Wang 1,2,3,7,*
Author Affiliations
Abstract
1 Laboratory of Micro-Nano Optoelectronic Materials and Devices, Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
3 State Key Laboratory of High Field Laser Physics, CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
4 School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
5 STU & SIOM Joint Laboratory for Superintense Lasers and the Applications, Shanghai 201210, China
6 Department of Physics, Engineering Physics & Astronomy and Department of Chemistry, Queen’s University, Kingston, K7L-3N6 Ontario, Canada
7 State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
8 e-mail: sfzhang@siom.ac.cn
This work reports the real-time observation of the interlayer lattice vibrations in bilayer and few-layer PtSe2 by means of the coherent phonon method. The layer-breathing mode and standing wave mode of the interlayer vibrations are found to coexist in such a kind of group-10 transition metal dichalcogenides (TMDCs). The interlayer breathing force constant standing for perpendicular coupling (per effective atom) is derived as 7.5 N/m, 2.5 times larger than that of graphene. The interlayer shearing force constant is comparable to the interlayer breathing force constant, which indicates that PtSe2 has nearly isotropic interlayer coupling. The low-frequency Raman spectroscopy elucidates the polarization behavior of the layer-breathing mode that is assigned to have A1g symmetry. The standing wave mode shows redshift with the increasing number of layers, which successfully determines the out-of-plane sound velocity of PtSe2 experimentally. Our results manifest that the coherent phonon method is a good tool to uncover the interlayer lattice vibrations, beyond the conventional Raman spectroscopy limit. The strong interlayer interaction in group-10 TMDCs reveals their promising potential in high-frequency (terahertz) micro-mechanical resonators.
Photonics Research
2019, 7(12): 12001416
Author Affiliations
Abstract
1 Laboratory of Micro-Nano Photonic and Optoelectronic Materials and Devices, Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
3 State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures of Ministry of Education, Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Fudan University, Shanghai 200433, China
4 Department of Physics, Engineering Physics & Astronomy and Department of Chemistry, Queen’s University, Kingston K7L-3N6, Ontario, Canada
5 State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
Mechanical exfoliation (ME) and chemical vapor deposition (CVD) MoS2 monolayers have been extensively studied, but the large differences of nonlinear optical performance between them have never been clarified. Here, we prepared MoS2 monolayers using ME and CVD methods and investigated the two-photon absorption (TPA) response and its saturation. We found that the TPA coefficient of the ME monolayer was about (1.88 ± 0.21) × 103 cm/GW, nearly two times that of the CVD one at (1.04 ± 0.15) × 103 cm/GW. Furthermore, we simulated and compared the TPA-induced optical pulse modulation in multilayer cascaded structures, which is instructive and meaningful for the design of optical devices such as a beam shaper and optical limiter.
190.4400 Nonlinear optics, materials 160.4236 Nanomaterials 190.5970 Semiconductor nonlinear optics including MQW 020.4180 Multiphoton processes 
Chinese Optics Letters
2019, 17(8): 081901
Author Affiliations
Abstract
1 Laboratory of Micro-Nano Optoelectronic Materials and Devices and CAS Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
3 School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
4 Department of Physics, Engineering Physics & Astronomy and Department of Chemistry, Queen’s University, Kingston, Ontario K7L-3N6, Canada
5 State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
6 e-mail: sfzhang@siom.ac.cn
Questions hovering over the modulation of bandgap size and excitonic effect on nonlinear absorption in two-dimensional transition metal dichalcogenides (TMDCs) have restricted their application in micro/nano optical modulator, optical switching, and beam shaping devices. Here, degenerate two-photon absorption (TPA) in the near-infrared region was studied experimentally in mechanically exfoliated MoS2 from single layer to multilayer. The layer-dependent TPA coefficients were significantly modulated by the detuning of the excitonic dark state (2p). The shift of the quasiparticle bandgap and the decreasing of exciton binding energy with layers were deduced, combined with the non-hydrogen model of excitons in TMDCs and the scaling rule of semiconductors. Our work clearly demonstrates the layer modulation of nonlinear absorption in TMDCs and provides support for layer-dependent nonlinear optical devices, such as optical limiters and optical switches.
Photonics Research
2019, 7(7): 07000762
Author Affiliations
Abstract
1 Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Science, Shanghai 201800, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 e-mail: hongxingd@siom.ac.cn
4 Department of Electronic Engineering, Xiamen University, Xiamen 361005, China
5 IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240, China
This work presents the saturable absorption (SA) properties of CsPbBr3 perovskite quantum dots (QDs). The perovskite QDs show excellent SA performance with a nonlinear absorption coefficient of ?35×10?2 cm/GW and a figure of merit of 3.7×10?14 esu?cm. Further, their use as saturable absorbers in a passively Q-switched visible solid-state laser for the generation of soliton pulses is demonstrated. These results demonstrate the potential for the perovskite QDs to act as saturable absorbers.
(190.4400) Nonlinear optics materials (160.4670) Optical materials (160.4760) Optical properties. 
Photonics Research
2017, 5(5): 05000457
作者单位
摘要
1 中国科学院上海光学精密机械研究所中科院强激光材料重点实验室, 上海 201800
2 西北大学化学与材料科学学院, 陕西 西安 710127
得益于独特的二维量子限制效应以及层与层之间耦合微扰的消除, 石墨烯、过渡金属硫化物MX2(M=Mo,W,Ti,Nb等; X=S,Se,Te等)、黑磷等二维层状半导体材料与其体材料相比, 在电子学、光子学等性能上都有本质的提高。以中国科学院上海光学精密机械研究所近几年的相关研究成果为主要对象, 结合国内外研究进展, 重点介绍了二维材料的制备方法、物理性质和超快非线性光学性能以及相关器件的研究进展, 并对其前景进行了展望。
材料 非线性光学 纳米结构 过渡金属硫化物 黑磷 饱和吸收效应 
中国激光
2017, 44(7): 0703004
Author Affiliations
Abstract
1 Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics,Chinese Academy of Sciences, Shanghai 201800, China
2 School of Physics and the Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN),Trinity College Dublin, Dublin 2, Ireland
3 State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics,Chinese Academy of Sciences, Shanghai 201800, China
Liquid-phase-exfoliation technology was utilized to prepare layered MoS2, WS2, and MoSe2 nanosheets in cyclohexylpyrrolidone. The nonlinear optical response of these nanosheets in dispersions was investigated by observing spatial self-phase modulation (SSPM) using a 488 nm continuous wave laser beam. The diffraction ring patterns of SSPM were found to be distorted along the vertical direction right after the laser traversing the nanosheet dispersions. The nonlinear refractive index of the three transition metal dichalcogenides dispersions n2 was measured to be ~10 7 cm2·W 1, and the third-order nonlinear susceptibility χ(3) ~ 10 9 esu. The relative change of effective nonlinear refractive index Δn2e∕n2e of the MoS2, WS2, and MoSe2 dispersions can be modulated 0.012– 0.240, 0.029–0.154, and 0.091–0.304, respectively, by changing the incident intensities. Our experimental results imply novel potential application of two-dimensional transition metal dichalcogenides in nonlinear phase modulation devices.
Nonlinear optics Nonlinear optics Nanomaterials Nanomaterials Nonlinear optical materials Nonlinear optical materials 
Photonics Research
2015, 3(2): 02000A51

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!